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Abstract. As workflow systems get more widely used, the number of
workflows and the volume of provenance they generate has grown con-
siderably. New tools and infrastructure are needed to allow users to in-
teract with, reason about, and re-use this information. In this paper, we
explore the use of clustering techniques to organize large collections of
workflow and provenance graphs. We propose two different representa-
tions for these graphs and present an experimental evaluation, using a
collection of 1,700 workflow graphs, where we study the trade-offs of these
representations and the effectiveness of alternative clustering techniques.

1 Introduction

As workflow systems get more widely used, the number of workflows and the vol-
ume of provenance they generate has grown considerably. In fact, large collections
of workflows have recently become available through Web sites that enable users
to publish and share workflows [19, 13]. Yahoo! Pipes [19], for example, allows
users to interactively create data mashups (represented as workflows) through
a Web-based interface. Although Yahoo! Pipes has been online for a little over
one year, there are already several thousand “pipes” stored on their servers.

The availability of large collections of workflows, such as the ones being held
at workflow-sharing sites and in provenance repositories, creates new opportuni-
ties for exploring and mining this data. In this paper, we explore different tech-
niques to cluster workflows. The ability to group similar workflows together has
many important applications. For example, clustering can be used to automati-
cally create a directory of workflows, similar to DMOZ (http://www.dmoz.org),
that users can easily browse. Clustering can also be used to provide a better
organization for search results. For example, Yahoo! Pipes provides basic search
capabilities through keyword-based interfaces. But because the results are dis-
played as a long list, users have to go through the list and examine the results
sequentially to identify the relevant ones. By clustering the results into distinct
groups, users can have a more global and succinct view of the results and more
quickly identify the information they are looking for.

The problem of clustering workflows, however, remains largely unexplored.
This paper is, to the best of our knowledge, the first study on using clustering



Fig. 1. On the left: a graph representation of a workflow in the visualization domain
and on the right its generated data products.

techniques for workflow graphs. We explore different representations for these
graphs as well as distance measures and clustering algorithms. We perform an
experimental study, using a collection of 1,700 workflow graphs, where we ex-
amine the trade-offs of these configurations and the effectiveness of alternative
clustering approaches.

The remainder of this paper is organized as follows. In Section 2, we review
basic clustering concepts and discuss different choices for designing clustering
strategies for workflows, including alternative representations for workflows and
distance measures. We present our experimental evaluation in Section 3 and
describe preliminary results that indicate that clustering strategies can be de-
signed that are both scalable and effective for workflow graphs. We conclude in
Section 4, where we outline directions for future work.

2 Clustering Workflows

Clustering is the partitioning of objects, observations or data items into groups
(clusters) based on similarity. The goal is to group a collection of objects into
clusters, such that the objects within each cluster are more related to one another
than to those in different clusters.

Clustering techniques are widely applicable and have been used in many
different areas (see [10] for a survey). These areas include, but are not limited
to: document retrieval [2, 4], image segmentation [12, 18] and data mining [5].
Clustering has also been applied in the context of business workflows to derive
workflow specifications from sequences of execution log entries [7].

To cluster a set of elements, three key components are needed: a model to
represent the elements; a (dis)similarity measure or a distance metric; and a
clustering algorithm. In this section we describe different alternatives for each
of these components when the object of clustering is a workflow graph.

2.1 Alternative Workflow Representations

Data representation refers to the set of features that will be available to the
clustering algorithm. A workflow can be defined as a network of tasks structured



Fig. 2. Vector representation of two different VTK (Visualization Toolkit) workflows.
The workflow on the left does isosurface extraction and the workflow on the right does
volume rendering.

based on their control and data dependencies. Workflows can be represented as
directed graphs, where nodes correspond to modules that perform computations
and edges correspond to data streams, as shown on the left of Figure 1. For clus-
tering purposes, we can select different features from these graphs. For example,
a possible representation of this graph is to capture only the names of modules
and the (unlabeled) edges between modules. More complex representations can
be obtained if we take into consideration the parameter values and the input
and output ports of each module.

For the clustering strategy to be effective, the data representation must in-
clude descriptive features in the input set (feature selection), or that new features
based on the original set be generated (feature extraction). In the representa-
tion above, the selected features are the labeled workflow graphs, which is an
example of a structured feature. Another way of representing a workflow is as a
multidimensional vector [14], which is very popular in the information retrieval
literature [1]. In our case, the dimensions in the vector space are defined by
the union of all the possible module names the workflows in the input set may
contain. Figure 2 illustrates the vector representation of two different workflows
that combine modules from the Visualization Toolkit library (VTK) [11].

At first, this representation may seem not very suitable for workflows because
the structural information is completely lost. However, we will see that repre-
senting workflows as vectors will have its advantages when we discuss similarity
measures and clustering algorithms.

2.2 Measuring Workflow Similarity

The similarity measure is critical to any clustering technique and it must be
chosen carefully. Usually, the similarity measure is a distance measure defined
on the feature space. If we model workflows as graphs, graph-based distance
measures can be used, such as edit distance [15], subgraph isomorphism [16],
and Maximum Common Induced Subgraph (MCIS). Consider for example MCIS.
The distance measure dMCIS derived from the MCIS of two graphs G1 and G2



Fig. 3. Vector Space (VS) distance and Maximum Common Induced Subgraph (MCIS)
distance for workflows G1 and G2. Notice that the VS distance does not capture struc-
tural differences (i.e., VS distance equals zero) and that although the path A→ B → C
is a common subgraph of G1 and G2, it is not an induced subgraph of G1.

is defined as [3]:
dMCIS(G1, G2) = 1− |mcis(G1, G2)|

max{|G1|, |G2|}
Intuitively, the larger a MCIS of two graphs is, the more similar the two

graphs are. Notice that if two graphs are isomorphic, their MCIS distance is 0 and
if they do not have any common subgraph, their MCIS distance is 1. Bunke and
Shearer [3] also demonstrated that the MCIS distance satisfies the properties of
a metric. The problem with this measure is that it is computationally expensive
and for a large collection of workflows, that can be a limitation.

When workflows are represented using the vector space (VS) model, other
distance metrics can be used (e.g., Euclidean and Euclidean squared distances).
A widely-used distance metric for VS is the cosine distance dVS between two
vectors v1 and v2, defined as:

dVS(v1, v2) = 1− cos θ = 1− v1 · v2
‖v1‖‖v2‖

Figure 3 shows a concrete example of how dMCIS and dVS are computed for
two structurally different graphs. Note their different behaviors: while MCIS is
able to capture the (structural) difference between the workflows, the cosine dis-
tance is not. This example highlights the importance of selecting an appropriate
representation and distance measure.

The input set can be represented directly in terms of the dissimilarity between
pairs of observations. This can be done by means of a matrix of dissimilarities,
which is a N × N matrix M , where N is the number of observations and each
element mij contains the distance between observations i and j.

2.3 Clustering Algorithms

There are many different approaches to clustering data. Roughly speaking, the
cluster algorithms can be classified as hierarchical or partitioning (see [10] for a
more comprehensive taxonomy of clustering techniques). Partitioning algorithms
produce only a single partition of the input set while hierarchical methods pro-
duce a nested series of partitions. One of the most popular partitioning methods



is the K-means algorithm. K-means partitions the input set N into K clusters
in such a way that it minimizes the intracluster dissimilarity or equivalently
maximizes the intercluster dissimilarity [8]. Intracluster dissimilarity Dintra is
defined as:

Dintra =
1
2

K∑
k=1

∑
m∈k

∑
n 6=m∈k

d(xm, xn)

and intercluster dissimilarity Dinter is defined as:

Dinter =
1
2

K∑
k=1

∑
m∈k

∑
n∈k′ 6=k

d(xm, xn)

Summing both dissimilarities, we obtain the total point scatter T of the input
set, which is independent of cluster assignment:

T = Dinter +Dintra =
1
2

N∑
m=1

N∑
n=1

d(xm, xn)

Because it is not practical to compute this by exhaustive enumeration, K-
means works in a iterative greedy descent fashion, as described below:

1. Specify the initial K cluster centers
2. Assign each observation to the closest center
3. Recompute centers of each cluster as the mean of the observations in the

cluster
4. If assignments have changed, go to 2.

The problem with K-means is that computing centers is possible only with the
vector space based features. In order to work with arbitrary representations, such
as given by a matrix of dissimilarities, the algorithm can be generalized to the
K-medoids algorithm, in which at each iteration the centers are restricted to be
one of the observations assigned to the cluster. The cost of performing K-means
is proportional to KN and the cost of performing K-medoids is proportional to
KN2, which is computationally more expensive.

The advantage of these methods is that they converge rather quickly and are
very easy to implement. The disadvantages of both K-means and K-medoids are
the choice of the parameter K and the fact that they are very sensitive to the
initialization. Because of that we often need to run these algorithms a few times
in order to get the best cluster configuration. Another problem is that they do
not present an order relation inside each cluster, and when this is important,
using a hierarchical clustering technique is a better option.

Hierarchical clustering algorithms, as their name suggests, build hierarchical
representations such that the clusters at each level of the hierarchy are formed by
merging two clusters at the next lower level. So, at the lowest level, each cluster
has a single object and at the highest level, there is only one cluster containing all
the objects. Then, there are N − 1 levels in the hierarchy. Hierarchical methods



require neither an initialization nor a parameter K. However, they do require
the specification of a dissimilarity measure between groups of objects, based on
the pairwise dissimilarities among the objects in the two groups.

Depending on the strategy chosen to build the hierarchy, the algorithms can
be classified as agglomerative (bottom-up) or divisive (top-down) [8]. In the ag-
glomerative approach, the process is started at the bottom, and recursively at
each level two clusters with the smallest intercluster dissimilarity are merged
to form the next level, which will have one less cluster. Divisive approaches, on
the other hand, start at the top and recursively at each level a cluster is divided
into two new clusters such that they present the largest intercluster dissimilarity.
These recursive processes can be represented by a rooted binary tree. Figure 7
illustrates the results of running K-medoids on an input set containing 50 work-
flows, using the two dissimilarities measures described above. The last column
of the spreadsheet on the left shows the agglomerative representation for each
dissimilarity measure.

3 Experimental Evaluation

Our goal in this experimental evaluation is to assess the effectiveness of differ-
ent approaches to clustering workflows. In particular, we study the trade-offs
between a graph-based and a vector-based representation for workflows, and
compare different clustering algorithms. Before discussing our results, below we
describe the dataset we used in the experiments.

3.1 The Dataset

The workflows used in this study were generated by thirty students during a sci-
entific visualization course. Over the semester, the students were asked to design
workflows to solve different visualization problems (e.g., generate an isosurface
visualization of a skull or create a vector field visualization of the salinity of a
river). All these tasks were performed in VisTrails [17], a workflow development
tool that captures provenance of workflow evolution [6], i.e., all refinements and
parameter explorations performed by users during workflow design. For each as-
signment, the students turned in a file containing detailed provenance of their
work, including all different workflow variations they created to solve the prob-
lems in the assignment. They were instructed to tag the actual solution work-
flows with a meaningful label, so that these could be (easily) identified by the
instructor and TAs.

To assemble our dataset W we extracted from the files only the workflows
identified with a “solution” tag: a total of 1730 workflows. We also classified
these workflows, so that we could have reference data to evaluate the quality of
the resulting clusters. The classification was done as follows. Based on the assign-
ment problem and the tag provided by the student, we classified each workflow
by the type of problem they were supposedly solving. For example, a workflow
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Fig. 4. (A) The initial 13 classes used to partition W and the number of workflows
in each class. (B) Box-plot, histogram and some statistics for the distribution of the
number of nodes per number of labels in W.

for assignment 1 tagged as Problem 1 was classified as isosurface, since prob-
lem 1 in this assignment asked the students design a workflow for extracting
isosurfaces of a 3-dimensional object. For some problems, a specific technique
was not required, the workflows created for these problems were classified as
open. Figure 4 (A) shows the 13 classes we used and the number of workflows
in each class.

The workflows in W contained all information necessary for running them:
modules, connections, dependencies, parameters, parameter values, etc. For clus-
tering purposes we use a simplified representation for the workflows that pre-
serves only the module names and connection information: we abstract a work-
flow as a directed simple labeled graph. More formally, a workflow W is a triple
W = (N,A, ` : N → L), where N is the set of modules or nodes, A is the set of
arcs, which is a subset of all ordered pairs in N ×N and ` is a function assigning
one label in the set L to each node in N . Simple graphs have no loops, so pairs
(x, x) are not allowed in A.

Although W contained 1730 workflows some of their graph representations
were exactly the same (i.e., isomorphic graphs). This was expected to happen
since many workflows inW were designed to solve the same problem. So, for our
purposes, instead of using W we used its subset W ′ that consisted of the 1031
different (i.e., non-isomorphic) graphs in W.

3.2 Deriving Clusters

Based on the workflow abstraction described in Section 3.1, we used the repre-
sentations, the dissimilarity measures and the algorithms detailed in Section 2 to
cluster the workflows in W. Throughout this section we will use the term MCIS
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Fig. 5. Clustering W ′ using the VS and MCIS distances. The percentages of the two
“initial” classes (see Figure 4(A)) that had the most number of workflows inside each
cluster are reported. The bars were manually ordered trying to align similar color
patterns. The colormap is also the same as used in Figure 4(A). Notice how the first 4
bars (bottom to top) present a similar pattern. This figure is best understood if viewed
in color.

to refer to the structural representation and dissimilarity configuration and VS
to refer to the vector-space and cosine distance configuration.

We constructed two distance matrices M ′
mcis and M ′

vs for W ′ based on the
MCIS and VS distance measures. These matrices were used as inputs for the clus-
tering algorithms we experimented with: K-medoids and hierarchical (agglom-
erative) clustering algorithms were used for both VS and MCIS; and K-means
was applied to the VS configuration.

For K-medoids and K-means, to select an appropriate value for K, each con-
figuration was executed 50 times for each specific value of K, with K varying
from 2 to 20. For each execution we computed the Dintra and Dinter cluster dis-
similarities and picked the best values, which for the final results were K = 8 in
the VS configuration and K = 9 in the MCIS configuration. The criterion used
for choosing the values of K is illustrated in Figure 7, which shows its usage
in preliminary results: we examine the values of logDintra as a function of the
number of clusters K and search for a “kink” in the plot to choose the most
interesting values of K for both configurations [8].



Fig. 6. Clustering results for 1031 workflows. On the spreadsheet (left) are the results
of K-Medoids for MCIS (K=9) and for VS (K=8). The visual difference between rep-
resentative workflows are shown on the right. They explain why observations classified
as vector field are in different clusters and why isospectra and vector field ob-
servations were assigned to the same cluster. This figure is best understood if viewed in
color.

3.3 Effectiveness of Clustering

By examining visualizations of the clustering results, including the ones shown
in Figures 5 and 6, we can observe that, for the most part, workflows that belong
to the same class are grouped together for both VS and MCIS configurations.
There are, however, classes that are spread out across (many) different clusters.
As Figure 5 shows, most workflows in the vector field and infovis classes are
grouped in in the first and second clusters (the first two bars, starting from the
bottom). However, workflows classified as being vector field are also found in
other clusters.

While trying to understand the heterogeneity of some of the clusters, we
came across an interesting and unexpected finding: our classification based on
assignment problem and student-specified tag was not accurate for all classes.
We selected some of the workflows classified as vector field but that ended
up in different clusters (A and B)—which we refer to as vector field1 and
vector field2. We also selected two workflows in cluster A which belong to
different classes: vector field1 and isospectra. Then, we compared them,
side-by-side. The visual difference results for the two workflow pairs, displayed
in Figure 6, show that: vector field1 and vector field2 have no modules
in common; and vector field1 and isospectra have a very similar structure,
which differs in a single module. The workflows were actually correctly grouped.
This indicates that clustering can be an effective means to organize workflow
collections.



Fig. 7. Clustering results for 50 workflows. The groups formed by K-medoids are indi-
cated in the agglomerative views. The plots below the spreadsheet show log Dintra as
a function of the number of clusters (K) for each measure, where the chosen values of
K are highlighted. The curves were translated to 0 at K=1.

Although the results produced by K-medoids give some insight into the dif-
ferent types of workflows in our dataset, they do not provide much information
about the relationship between workflows in each cluster. To understand these
relationships, we used an agglomerative representation to inspect the behavior
of both distance measures in more detail. Figure 7 shows, side by side, the re-
sults from MCIS and VS using K-medoids and agglomerative clustering. The
relationship between the workflows in a cluster are easily seen by looking at the
structure of the agglomerative trees. Interesting observations can be drawn from
these trees. Notice in both trees that there is a cluster with a single observation
(stemming from the root): they correspond to the same workflow. This workflow
is an outlier because it contains a single module that does not appear frequently
in other workflows in our dataset.

This hierarchical representation can also help in the selection of an appro-
priate value for K. Depending on the distance metric used, the best values for



Fig. 8. For the 1031 workflows of W ′ we computed 530965 (= 1031× 1030/2) VS and
MCIS distance values. Ordering (independently) all these values for the two distance
measures resulted in the above plot.

K can be different. When running K-medoids on a subset of W containing 50
workflows, K = 6 was chosen for MCIS and K = 4 for VS. These values are
highlighted in the plots on the right of the figure. Note that the both hierarchies
in the figure have a number of subtrees that is similar to the K we selected for
each configuration.

3.4 Workflow Representations: Graphs vs. Vectors

Figures 5 and 6 show an interesting pattern: the different representations and
associated distance measures lead to similar clusters. Consider for example, the
first four bars (bottom-up) of the two solutions in Figure 5 have a similar color
pattern and size. Given that one representation captures the graph structure
and the other is completely unstructured (i.e., it considers a workflow as a bag
of words), this result was surprising to us.

To compare in more detail the graph-based and vector-based representations
for workflows, we plotted the values of the distance matrices M ′

mcis and M ′
vs.

Figure 8 shows a plot of the values in these matrices. Notice that the plot of
the MCIS distances does not start from zero. This happens because the dmcis

is zero only if it is applied to a pair of isomorphic graphs and by construction
there are no such pairs in W ′. The same does not occur to the VS plot: dvs can
be zero even when the graphs are different (see Figure 3 for an example). Note
that this plot shows that the distances capture by these two distinct measures
are similar.

We also compared the clusters produced by the two configurations: we used
the Jaccard similarity coefficient [9], which is a well-known index for comparing
two partitions of the same set. The larger this number is, the more similar



the partitions are. Let CK=8
vs and CK=9

mcis denote the clustering results produced
by the VS and the MCIS configurations, respectively. The Jaccard index for
partitions CK=8

vs and CK=9
mcis was 0.328. To better understand what this number

means, we checked if a partition of W ′ that matched CK=9
mcis as well as CK=8

vs

could be found by chance. We then computed the Jaccard index between CK=9
mcis

and 1000 randomly generated partitions of W ′, with K = 9. The mean value
of the Jaccard index on this experiment was 0.08 and the maximum value was
0.082, very distant from the number obtained for the MCIS and VS clusters. This
supports our hypothesis that the VS and MCIS configurations are correlated.

These results suggest that labels in W ′, the only information used by VS,
capture a certain amount of the graph structure. To gain insight into this, we
examined the distribution of labels across workflows (see Figure 4 (B)). A label
appears in 1.37 workflows on average, with a standard deviation of 0.59. Thus,
for our dataset, the number of labels is a good estimation to the number of
nodes in a workflow (e.g., in 50% of our workflows the number of nodes was at
most 1.14 times the number of labels). Also, empirically, we have observed that
for the workflows in our dataset, the number of possible connections between
modules is small, and it is constrained by the module labels. Intuitively, there is
a large number of module pairs, but very few are compatible and can be directly
connected.

4 Conclusion

We have presented a first study on clustering workflow graphs. We explored
different representations for these graphs, studied the trade-offs of these rep-
resentations, and assessed the effectiveness of alternative clustering techniques.
Our experimental results show that clustering can be effective to organize large
collections of workflows. We have also observed that for our dataset, using a
vector-space based representation produced good results—comparable to results
obtained using the more costly structural representation.

There are several directions we plan to pursue in future work. Although our
preliminary results suggest that, for our dataset, the vector space representation
for workflows can be a cost-effective and scalable strategy to cluster large col-
lections, additional experiments are needed to verify whether a similar behavior
is obtained in other workflow collections. We also plan to investigate more sys-
tematic methods to determine the value of K (for K-medoids and K-means) as
well as experiment with more complex representations of workflows, for instance,
that capture parameter values and information about input and output ports
for the modules.
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